Monday, October 5, 2020

Next Generation Meat Analogues: a spotlight on Plant Protein Science and Technology Forum presenter Dr. Atze Jan Van der Goot

The Plant Protein Science and Technology Forum is dedicated to covering the entire spectrum of plant protein nutrition from livestock to pets to humans. It also seeks to investigate the plant protein industry’s many facets, including quality determination and the sensory science of plant proteins.

Join us on October 6 for the forum's first session, "Processing and Utilization Technologies," which will discuss processing technologies and utilization of plant-based proteins and their relationships in plant-based food systems. Presentations include protein-starch interactions in the development of structure and functionality of plant-based products, development strategies for plant-based meat alternatives, almond, canola and oats as alternative protein sources and enzyme solutions for plant-based food and beverage production.

Presenter spotlight: Dr. Atze Jan Van der Goot

Professor Food Structuring, Lab of Food Process Engineering, Wageningen University, The Netherlands

His presentation, "Scientific Challenges for Next Generation Meat Analogues," will provide attendees:

  • A better understanding of fibrous structure formation will facilitate innovation in the meat analog area
  • Two novel scientific methods will be presented that can be used to better understand structure formation
  • The way how proteins are extracted from plant materials determine their structuring potential

Meet Dr. Atze Jan Van der Goot

1) What discoveries from your previous research inform the work you plan to discuss at the Plant Protein Science and Technology Forum?
I have already been quite active in the meat analog or plant-based protein business for about 10 to 15 years. In that time, we have made a couple of discoveries, mainly a new method for manufacturing fibrous materials. The first discovery, in 2007, is called the shear cell, which enabled us to make dairy proteins. Years later, we translated this method to plant proteins and scaled this version of our shearing device for broader use in industry. So, our group is known for introducing a new method to make fibrous products that can form the basis for next-generation meat analogs.

2) What is the significance of the research you plan to discuss at the Plant Protein Science and Technology Forum, either for future research routes or for real-world applications?
We hope this technology we have developed will allow the use of pea proteins to eventually replace soy proteins which is often used in meat analogs, as well as in our technology. From there, we would hope to better understand the differences and similarities between soy and pea and translate those learnings to, for example, extrusion. So, in the presentation, I plan to introduce the technology, its advantages and disadvantages and then move on to considering what type of science and technology we have to develop to understand how to replace soy and peas.

3) Describe the biggest problem you encountered and solved during your most recent project? 
Meat analogues are based rather empirically still, and I'm a scientist at the university. So, my role here is not to develop technology or companies like Beyond Meat or Impossible Food or the Vegetarian Butcher, but to develop new tools to analyze the material’s properties and to understand why you can transform fibrous materials from one state into another. If you fractionate your starting plant material into protein-isolated concentrate, it is important to understand how that process influences your properties, very crucial to understanding the structural potential of soy and peas. So, in my department, we develop all kinds of tools and methods to understand how those materials behave in structuring processes. We also would like to quantify fibrousness, which is still a rather empirical term. So, we are also developing new methods to quantify an isotropy inside the material. So, in sum, my responsibility in this area is to create new scientific insights by making novel tools to analyze those source materials.

4) Share a turning point or defining moment in your work as a scientist and/or industry professional.
I think there have been quite a few defining moments in my work. The first moment would be when we created a new technology to make fibrous materials. The second moment was when we translated that technology to plant materials and the third moment was when we had scaled up that technology to make a “vegetarian steak," a piece of material of 7 kilograms having a thickness of 3 centimeters (thus more than an inch), which goes far beyond the burgers and small pieces of meat now on the market. So, those are the three rather defining moments for my career.

5) What excites you about your work?
Within the university, you have two elements, you have the content and you have the students. I like teaching a lot and seeing how Ph.D. students transform from a student into an experienced researcher. It’s even more exciting if they become really enthusiastic about the topic. So, if I can motivate them to continue in the meat analog field, I feel I have succeeded as their mentor. One of my great successes in this capacity is the fact that one of my Ph.D. students started a company called Rival Foods, based on the shear cell technology. She is now really maturing the technology. We suspect that, in due time, the technology can be used to make a next-generation meat analog. So, the fact that I can combine teaching and research through this topic is what I enjoy most about my work.

6) What are potential future directions for the work you are discussing at the Plant Protein Science and Technology Forum?
My personal research plans involve creating more scientific insights through developing new methods, modeling along with other related avenues that help us understand the in-depth underlying science necessary to create the next innovative meat analogs possible. The second part of my research is to understand how we must process materials that have the potential for use as an ingredient in meat analogues but aren't yet included. 

Then you can, for example, think about sunflower and rapeseed, a byproduct from the rapeseed oil production that is used biodiesel here a lot in Europe, which means we have a huge amount of rapeseed byproduct available, but it's not being used in food industry yet. So, some of my current research, for which I am partnering with companies, focuses on how we can make this byproduct useful for the food industry. Then, of course, we also contribute to sustainability by using underutilized crops as a food ingredient. So, the future of my research is all about maturing the science for structuring meat analog products and then developing new technologies so that other underutilized ingredients can be used for more than one purpose.

Another potential future direction of my work could contribute to animal welfare by reducing the quantity of animal-based products pets and livestock consume. So, I have other research that is focused on have a plant-based dog food as well in the future.

7) What do you like to do when you are not in the lab or presenting at meetings?
One of my biggest hobbies is riding my race bike, a very typically Dutch past time. A day without biking feels almost uncomfortable for me. But I also love to spend with my family and reading, mainly thriller and science-related books. 

This session is on October 6, but there are more high-quality sessions scheduled throughout the month of October. Find out more about the full technical program.

No comments:

Post a Comment